# Analog Mixed Signal Circuits: From Neurons to Networks

Nima Maghari

**UFAMS** LAB

## Why Analog!

Signals in nature are in "Analog" form







**Seismic** 





## Why Analog!

Signals in nature are in "Analog" form





**Seismic** 

Natural signals often tend to have low/very low BW





## We Invented it!

 We are living in a "Digital" era where everything and anything can be digitized!





## We Invented it!

• We are living in a "Digital" era where everything and anything can be digitized!





## **Digital Communication**

- Early generations
  - Analog modulations
- Modern generations
  - Digital modulation
- Everything is *Digital*



- Federal Communication Commission (FCC)
  - Assign bandwidth 1GHz
    - 500 channels  $\rightarrow$  2 MHz/channel





- Federal Communication Commission (FCC)
  - Assign bandwidth 1GHz
    - 500 channels  $\rightarrow$  2 MHz/channel





- Federal Communication Commission (FCC)
  - Assign bandwidth 1GHz
    - 500 channels  $\rightarrow$  2 MHz/channel





- Federal Communication Commission (FCC)
  - Assign bandwidth 1GHz
    - 500 channels  $\rightarrow$  2 MHz/channel



Modern schemes transmit many more levels



8-level transmission

- Ideally an 8-level ADC is sufficient to recover data





8-level transmission

- Ideally an 8-level ADC is sufficient to recover data



– The signal tends to look more analog than digital!



- 8-level transmission
  - Ideally an 8-level ADC is sufficient to recover data



- The signal tends to look more analog than digital!
- For both transmission and receiver we need Analog!



## Background

- Different applications. demand diff. specs
  - High bandwidth for data
  - High quality for audio





## Background

- Different applications. demand diff. specs
  - High bandwidth for data
  - High quality for audio





- In ALL digital systems such as PC
  - All communication between ICs are digital







- In ALL digital systems such as PC
  - All communication between ICs are digital



#### 0 1 0 0 0 1 1 1 0 1 0



- In ALL digital systems such as PC
  - All communication between ICs are digital





- In ALL digital systems such as PC
  - All communication between ICs are digital





#### In ALL digital systems such as PC

#### All communication between ICs are digital





- In ALL digital systems such as PC
  - All communication between ICs are digital





- In ALL digital systems such as PC
  - All communication between ICs are digital



8

- In ALL digital systems such as PC
  - All communication between ICs are digital



- In ALL digital systems such as PC
  - All communication between ICs are digital



#### Where Else?









## Where Else?



**EXPRESS**<sup>®</sup>



**DisplayPort** 

#### Solutions:

- Use Adaptive filtering (FIR)  $\rightarrow$  Analog
- Inverse Channel Filter (IIR/FIR) → Analog
- High-Speed ADC (3-5 bits, >10GS/s) → Analog/Mixed-signal



## Background

- Different applications. demand diff. specs
  - High bandwidth for data
  - High quality for audio





## Background

- Different applications. demand diff. specs
  - High bandwidth for data
  - High quality for audio





- Each block has AT LEAST a single power management unit
  - As many as 10s of PM for a single block





- Each block has AT LEAST a single power management unit
  - As many as 10s of PM for a single block







- Each block has AT LEAST a single power management unit
  - As many as 10s of PM for a single block







- Each block has AT LEAST a single power management unit
  - As many as 10s of PM for a single block







 Each block has AT LEAST a single power management unit

- As many as 10s of PM for a single block







 Each block has AT LEAST a single power management unit

- As many as 10s of PM for a single block





 Each block has AT LEAST a single power management unit

- As many as 10s of PM for a single block



## Summary

Analog & Mixed-Signal



#### And much more....


# **Analog & Mixed-Signal Solutions**

- Most widely used analog & mixed signal circuits are
  - Analog to Digital Converters (ADCs)
  - Digital to Analog Converters (DACs)
- Broad range of speed and resolution
- Every SoC include many
  - Receiver chain
  - Clocking/PLL/DLLs
  - Power Management
  - Sensing & Sensor Interface



# **Analog to Digital Conversion I**

- Human ear can detect 16-22kHz
- Nyquist → Sampling at 48kHz



How good is the quantized sinewave?



# **Analog to Digital Conversion I**

- Human ear can detect 16-22kHz
- Nyquist → Sampling at 48kHz



How good is the quantized sinewave?



# Analog to Digital Conversion II

Output spectrum (0-24kHz)





# Analog to Digital Conversion II

Output spectrum (0-24kHz)





#### Oversampling

Sampling the signal faster (96kHz)





#### Oversampling

Sampling the signal faster (96kHz)



# Flash ADC

- Fastest among all
  - Output is thermometer
  - $-2^{N}$  comparators are needed for N bit resolution
  - 6-bit flash ADC requires 64 comparators
  - $3\sigma_{offset}$ <7.5mV → not easy!



#### Multi-Step Concept

 Take the "Residue" of the first stage and amplify/feed it to the second stage



#### Multi-Step Concept

 Take the "Residue" of the first stage and amplify/feed it to the second stage



## **Multi-Step ADC**

- Using this approach
  - N bit ADC can be broken down to M+P=N bits
  - For instance, an 8-bit flash ADC (256 comp.)
    - Can be implemented using 4+4 bits
      - Total of 32 comparator only!
- The offset/noise problem is resolved
- For more than two decades, this was the preferred approach



# Opamp



 For N bit ADC, the opamp should have minimum DC gain of 2<sup>Ntotal</sup>



# Opamp



 For N bit ADC, the opamp should have minimum DC gain of 2<sup>Ntotal</sup>

$$A_0 > 2^{N_{total}}$$

Large Gain



University of Florida

# Opamp



- For N bit ADC, the opamp should have minimum DC gain of 2<sup>Ntotal</sup>
- For sampling frequency of f<sub>s</sub>, the BW of opamp should be

$$A_0 > 2^{N_{total}}$$

Large Gain

$$f_{3dB} > \frac{(N+1)}{\pi} ln(2) \times f_{s}$$



# **Technology Scaling**

#### Moore's Law & CMOS process scaling

#### Double transistor count each 18 months





# **Technology Scaling**

- Moore's Law & CMOS process scaling
  - Double transistor count each 18 months

#### In terms of Analog performance & scaling





# **Technology Scaling**

- Moore's Law & CMOS process scaling
  - Transistors are becoming smaller & faster
  - Lower power, smaller area
  - Allows better integration

#### In context of analog

- Faster speed, but ...



University of Florida

- Digital scales <u>directly</u> in terms of
  - Speed
  - Area
  - Power

- Analog
  - Matching
  - Switching speed
  - Dynamic range
  - Noise
  - Area



- Digital scales <u>directly</u> in terms of
  - Speed
  - Area
  - Power



- Analog
  - Matching
  - Switching speed
  - Dynamic range
  - Noise
  - Area



- Digital scales <u>directly</u> in terms of
  - Speed
  - Area
  - Power



- Analog
  - Matching
  - Switching speed
  - Dynamic range
  - Noise
  - Area



M

M.

 $\mathbf{D}_{out}$ 

Digital scales <u>directly</u> in terms of

D<sub>in O</sub>

- Speed
- Area
- Power

- Analog
  - Matching
  - Switching speed
  - Dynamic range
  - Noise
  - Area



D<sub>in O</sub>-

D<sub>out</sub>

23



M

 $\mathbf{D}_{out}$ 

Digital scales <u>directly</u> in terms of

 $\mathsf{D}_{\mathsf{in}}$  O

- Speed
- Area
- Power

- Analog
  - Matching
  - Switching speed
  - Dynamic range
  - Noise
  - Area



D<sub>in O</sub>-

D<sub>out</sub>



# Innovative Solutions are needed To allow Analog scale well in advanced CMOS nodes



# Innovative Solutions are needed To allow Analog scale well in advanced CMOS nodes

#### even with that ...



University of Florida

#### ADCs vs. Tech. node



25

#### ADC types vs. Tech. node





University of Florida

# **ADC Types**

- Several types ADC covering the spectrum





27

# **ADC Types**

- Several types ADC covering the spectrum





# **Alternative Approach: Oversampling**

Improving SNR for a band-limited signal

– Increasing # of quantization levels  $\rightarrow$  smaller V<sub>LSB</sub>

$$\overline{\mathbf{q}_{\mathsf{E}}^2} = \frac{\mathbf{V}_{\mathsf{LSB}}^2}{\mathbf{12}}$$

Increase the sampling frequency





# Oversampling

- Doubling the oversampling ratio (OSR)
  - Halves the quantization power
  - Increases SNR by 3dB

$$OSR = \frac{f_{s}}{2f_{B}}$$

- 4-bit flash ADC @ 100 MHz
  - OSR=1 (Nyquist) SNR=25.7dB
  - OSR=4 SNR=31.7dB



## **Noise-Shaping & Oversampling**

 Using both oversampling and noiseshaping





## **Noise-Shaping & Oversampling**

 Using both oversampling and noiseshaping





## **Noise-Shaping & Oversampling**

 Using both oversampling and noiseshaping





#### **Frequency Domain Analysis**

$$Y(n) = q_{E}(n) - q_{E}(n-1)$$

By taking the Z-transform



The quantization noise is shaped by the NTF filtering, and much of it is pushed to the Nyquist



University of Florida

#### Implementation

- We are aiming to implement  $Y(z) = (1 - z^{-1})q_{E}(z)$ 
  - For a Nyquist quantizer



For first-order noise shaping

$$Y(z) = X(z) + (1 - z^{-1})q_{E}(z)$$





#### **Output Spectrum**

#### - OSR=32, Q-levels=3






Limited opamp DC gain (A)

$$H(z)_{\text{limited}} = \frac{z^{-1}}{1 - (1 - 1/A)z^{-1}}$$

NTF would be

NTF 
$$\approx 1 - (1 - 1/A)z^{-1}$$





Limited opamp DC gain (A)

$$H(z)_{\text{limited}} = \frac{z^{-1}}{1 - (1 - 1/A)z^{-1}}$$

• NTF would be

NTF  $\approx 1 - (1 - 1/A)z^{-1} \longrightarrow$  Zero moved by 1/A



- Depending on OSR
  - High OSR → Opamp gain dominates
  - Low OSR  $\rightarrow$  Quantization noise dominates



- Depending on OSR
  - High OSR → Opamp gain dominates
  - Low OSR  $\rightarrow$  Quantization noise dominates





University of Florida

# **Theoretical gain-error effect**

- 2<sup>nd</sup> Order DSM





- Further improvement *using higher order* DSM



# Continuous-Time $\Delta\Sigma$

- CT integrator Vs. DT
  - No sampling switch  $\checkmark$
  - No sampling cap ✓
  - Better Settling and Slewing  $\checkmark$
  - RC Variation **×**





# **ΔΣ Modulators**

- Trade-off (Figure of Merit)
  - High SQNR
  - High bandwidth
  - Low Power
- Back-end quantizer
  - Typically Flash
  - Memoryless
  - Large power consumption





owel

BW

Quantizer

**SNDR** 

# **Traditional Dual-Slope**

- Simple ADC using time as media
  - Signal is sampled in one phase, Discharged in the other phase
  - Discharging time quantized by fast clock reset



 $\mathbf{D}_{\mathrm{out}}(\mathbf{n}) = \mathbf{X}(\mathbf{n}) + \mathbf{q}_{\mathrm{e}}(\mathbf{n})$ 



# Noise-Shaped Integr. Quant.

#### Small modification

- Input is sampled in the same fashion
- Discharging until the next edge after zero crossing





# Noise-Shaped Integr. Quant.

#### Small modification

- Input is sampled in the same fashion
- Discharging until the next edge after zero crossing



# **Noise-Shaped Integr. Quant.**

#### Small modification

- Input is sampled in the same fashion
- Discharging until the next edge after zero crossing



# **Double Noise-Shaped Quantizer**

- Double Noise-Shaped Quantizer
  - Working in Time/Phase domains



# **CT DSM Architecture**

- DNSQ and digital integrator at back-end
  - Fabricated in 130nm node
  - 6-bit Double Noise Shaped Quantizer



# **Performance Comparison**

- Measured fabricated prototype
  - Bested every performance down to 28nm node



$$f_s = 640 \text{ MHz BW} = 15 \text{ MHz}$$





### **Future work**

- How far we can make scale ADCs efficiently in nanometer CMOS nodes?
- BW limitations?
- Are we ready for portable 5G?

Currently investigating these funded by Sponsored by Semiconductor Research Corp (SRC) And Qualcomm Inc.





### Where Were We

ADC pioneers

150 lbs

\$8,500.00

#### – 11-bit 50ks/S SAR ADC



Courtesy, Analogic Corporation 8 Centennial Drive Peabody, MA 01960

http://www.analogic.com



#### FoM= 2.88µJ/ Conv. Step

 Latest ADCs in same performance range with 2fJ/Conv. Step



 Latest ADCs in same performance range with 2fJ/Conv. Step

– Improvement of **1.44 Billion** times!



- Latest ADCs in same performance range with 2fJ/Conv. Step
  - Improvement of **1.44** Billion times!
  - Not to mention the size reduction (0.1mm<sup>2</sup>)



- Latest ADCs in same performance range with 2fJ/Conv. Step
  - Improvement of 1.44 Billion times!
  - Not to mention the size reduction (0.1mm<sup>2</sup>)
- If vehicles followed the same



- Latest ADCs in same performance range with 2fJ/Conv. Step
  - Improvement of 1.44 Billion times!
  - Not to mention the size reduction (0.1mm<sup>2</sup>)
- If vehicles followed the same

- In 1960s, the average MPG was about 8



- Latest ADCs in same performance range with 2fJ/Conv. Step
  - Improvement of 1.44 Billion times!
  - Not to mention the size reduction (0.1mm<sup>2</sup>)
- If vehicles followed the same – In 1960s, the average MPG was about 8
- Improvement with factor of 1.44Billion means



- Latest ADCs in same performance range with 2fJ/Conv. Step
  - Improvement of **1.44** Billion times!
  - Not to mention the size reduction (0.1mm<sup>2</sup>)
- If vehicles followed the same – In 1960s, the average MPG was about 8
- Improvement with factor of 1.44Billion means

– With one drop of fuel (0.1cc) you can drive round the earth 12 times!



# **Power Management**

Generate various DC voltages



- Low-Dropout Regulators (LDO)
  - Clean voltage ripple
  - Fast transient response
  - Min. power
  - Need fast opamp



#### Suffers from the same fate as ADCs









UF<sup>AMS</sup> LAB









University of Florida

### **Measurement Results**

#### Measured Results

- 0.13um process

#### Small Area (350X250um) Steady State power consumption < 100uA</li>





To be presented at European Solid-State Circuits (ESSCIRC) Sponsored by Analog Devices Inc (ADI)



# **IMPRESS**

- Implantable Multimodal Peripheral REcording and Stimulation System
  - To enable bidirectional control of prosthetic limb

DARPA LUKE arm









- Motivation: restore
  - motor functionality
  - sensory feedback
  - temperature, pressure sensation for better control,...
  - alleviate phantom limb pain





unec



- <u>່ ເກາອ</u>ດ
- Communication between brain of amputee and bionic arm/hand
  - Bi-directional neural interface







# **Proposed Solution**



hd-TIME: high-density Transverse Intrafascicular MicroElectrode



- Active probe: CMOS device + integrated electrodes implanted inside the nerve
  - **bidirectional interface** ← recording and stimulation
  - high electrode count with few external connections ← multiplexing
  - higher fiber selectivity ← transversal intra-fascicular implantation
  - higher signal ← local amplification
  - low power consumption ← power-efficient circuit design
  - minimum invasiveness ← chip thinning
  - $\frac{MS}{AB} = \frac{\text{long-term biocompatibility \& stability}}{University of Florida} \leftarrow \text{custom chip encapsulation}$



# Packaging



IrO<sub>2</sub> electrodes deposition Laser cutting of embedding Back-to-back gluing

> probe thickness: 2x75 µm (2x hd-TIME)









# ENG Acquisition Chain innec



- 64 active electrodes
  - AC-coupled in-pixel amplifier: 24 dB, ~1 Hz HPF corner
- Switch-matrix
  - select best recording electrodes without need of repositioning the probe
- 16 channels for simultaneous readout
  - Programmable Gain: 4–44 dB





# ENG Acquisition Chain innec

- Muxed at 31.25kHz/ch.
- Output driver
- ADC driver with programmable gain
- 12-bit 500kS/s SAR ADC
- synchronization MUX/ADC through SPI command






#### **ENG Acquisition Chain** unec

- Muxed at 31.25kHz/ch.
- Output driver

hermetic stack:

polyimide +

**ALD** layers

- ADC driver with programmable gain
- 12-bit 500kS/s SAR ADC
- synchronization MUX/ADC through SPI command



layers





### **Measurement Results**

unec



Acquisition of pre-recorded spikes through whole system



University of Florida

### **Physical Unclonable Function**

- Used in
  - Cryptography
  - Chip identification
  - Obfuscation







# **Physical Unclonable Function**

- Used in
  - Cryptography
  - Chip identification
  - Obfuscation







# **Our Approach**

- Create PUF for use in Analog/Mixed-Signal (AMS) applications
  - Leverages process variations
- Stochastic ADC based PUF:
  - Easy identification in AMS chips
  - Can also be utilized in fully digital chips using standard cells
  - Simple design
  - Minimal hardware overhead with reuse of components readily available in most AMS chips



# **PUF Bit Generation**

- Inherent random input offset voltage (V<sub>os</sub>) of each comparator is normally distributed
- Employ  $V_{os}$  to generate a single bit (OUT)



### **Proposed All-Digital Comparator**

#### Compared with Custom Design

Traditional Custom Designed Comparator (2-Tail) Proposed All-Digital Extended Offset Comparator (3-Tail)





### **Measurement Results**

### Fabricated prototype\*

- Fabricated in 0.13µm CMOS process
- Active area 0.144mm<sup>2</sup>
- Normalized Intra-HD
  - Across VDD (0.8V 1.4V)
    - 2-Tail: < 0.89%
    - 3-Latch: < 0.96%



- Across Temp (0°C 80°C)
  - 2-Tail: < 0.14%
  - 3-Latch: < 0.15%



University of Florida

### Conclusions

- Analog signals are everywhere
  - Even digital data requires analog signal processing techniques
- Different applications demand different specs
  - Audio  $\rightarrow$  Very high linearity and resolution
  - Video  $\rightarrow$  Medium BW and medium resolution
  - HD Video→ Medium BW and high resolution
  - BCI  $\rightarrow$  Very low BW and medium resolution
  - Communication →Large BW and medium resolution



### Conclusions

Analog signals are everywhere

Every new application opens up new opportunities and brings new challenges in Analog/Mixed-Signal Domain



# My Research & Sponsors

- Scalable ADCs
  - Sponsored by SRC & Qualcomm Inc.
- Power Management
  - Texas Instruments, Analog Devices
- Analog Mixed-Signal Security
  - NSF, Honeywell
- Implantable Electronics
  DARPA
- Sensor Interface
  - NSF



Semiconductor Research Corporation





AHEAD OF WHAT'S POSSIBLE™