
University of Florida

Analog Mixed Signal Circuits: 

From Neurons to Networks

Nima Maghari

AMS
  ABUFL



University of Florida
AMS
  ABUFL

Why Analog!

• Signals in nature are in “Analog” form
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Audio Neuron “spikes” 

Seismic

BW<10KHz

BW<24KHz

BW<1Hz

Natural signals 

often tend to have 

low/very low BW
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We Invented it!

• We are living in a “Digital” era where 

everything and anything can be digitized!
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Digital Communication

• Early generations
– Analog modulations

• Modern generations
– Digital modulation

• Everything is Digital

4
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Transmission

• Federal Communication Commission 

(FCC)
– Assign bandwidth 1GHz

• 500 channels   2 MHz/channel 
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Transmission

• Federal Communication Commission 

(FCC)
– Assign bandwidth 1GHz

• 500 channels   2 MHz/channel 

– Modern schemes transmit many more levels

5

 2 Mbit/s
1

0

1

0
0.5  3 Mbit/s
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• 8-level transmission
– Ideally an 8-level ADC is sufficient to recover data

Transmission
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• 8-level transmission
– Ideally an 8-level ADC is sufficient to recover data

– The signal tends to look more analog than digital!

– For both transmission and receiver we need 

Analog!

Transmission
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Background

• Different applications. demand diff. 

specs
– High bandwidth for data

– High quality for audio
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Digital Links

• In ALL digital systems such as PC
– All communication between ICs are digital
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Where Else?
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Where Else?

• Solutions:
– Use Adaptive filtering (FIR)  Analog

– Inverse Channel Filter (IIR/FIR)  Analog

– High-Speed ADC (3-5 bits, >10GS/s) 

Analog/Mixed-signal
9
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specs
– High bandwidth for data

– High quality for audio
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CPU/GPU and Power Management

• Each block has  AT LEAST a single 

power management unit
– As many as 10s of PM for a single block
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CPU/GPU and Power Management

• Each block has  AT LEAST a single 

power management unit
– As many as 10s of PM for a single block

11

1.2V/1.5V/3.3V 0.6V/0.9V
0.6V/1.8V/3.3V

0.75V

2.5V/5V
0.5V/0.9V

0.75V/1V

Li-Ion provides 3.7V!
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Summary

• Analog & Mixed-Signal

And much more….
12
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Analog & Mixed-Signal Solutions

• Most widely used analog & mixed signal 

circuits are
– Analog to Digital Converters (ADCs)

– Digital to Analog Converters (DACs)

• Broad range of speed and resolution

• Every SoC include many
– Receiver chain

– Clocking/PLL/DLLs

– Power Management

– Sensing & Sensor Interface

– …

13
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Analog to Digital Conversion I

• Human ear can detect 16-22kHz

• Nyquist  Sampling at 48kHz

• How good is the quantized sinewave?
14
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Analog to Digital Conversion II

• Output spectrum (0-24kHz)

• How many levels needed for 100dB?
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Analog to Digital Conversion II

• Output spectrum (0-24kHz)

• How many levels needed for 100dB?
> 65000
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Oversampling 

• Sampling the signal faster (96kHz)

• How much faster to get 100dB?
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Oversampling 

• Sampling the signal faster (96kHz)

• How much faster to get 100dB?
> 4.4 THz!
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Flash ADC

17
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• Fastest among all
– Output is thermometer 

– 2N comparators are needed for N bit resolution

– 6-bit flash ADC requires 64 comparators

– 3σoffset<7.5mV   not easy!
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Multi-Step Concept

– Take the “Residue” of the first stage and 

amplify/feed it to the second stage
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Multi-Step ADC

• Using this approach
– N bit ADC can be broken down to M+P=N bits

– For instance, an 8-bit flash ADC (256 comp.)

• Can be implemented using 4+4 bits

– Total of 32 comparator only!

• The offset/noise problem is resolved

• For more than two decades, this was 

the preferred approach

19
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Opamp

• Amplifier

• For N bit ADC, the opamp should have 

minimum DC gain of 2Ntotal

20
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Opamp

• Amplifier

• For N bit ADC, the opamp should have 

minimum DC gain of 2Ntotal

• For sampling frequency of fs, the BW of 

opamp should be
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Technology Scaling

• Moore’s Law & CMOS process scaling
– Double transistor count each 18 months
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Technology Scaling

• Moore’s Law & CMOS process scaling
– Double transistor count each 18 months

– In terms of Analog performance & scaling

21
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Technology Scaling

• Moore’s Law & CMOS process scaling
– Transistors are becoming smaller & faster

– Lower power, smaller area

– Allows better integration

• In context of analog
– Faster speed, but …

22
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Analog Scaling

• Digital scales directly in terms of 
– Speed

– Area

– Power

• Analog
– Matching

– Switching speed

– Dynamic range

– Noise 

– Area

23
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Analog Scaling

24

Innovative Solutions are needed

To allow Analog scale well in 

advanced CMOS nodes
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Analog Scaling

24

Innovative Solutions are needed

To allow Analog scale well in 

advanced CMOS nodes

even with that …
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ADCs vs. Tech. node

25
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ADC types vs. Tech. node
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ADC Types

– Several types ADC covering the spectrum

27

10 100 1K 10K 100K 1M 10M 100M 1G
~~

8

10

12

14

16

18

20

22

24

Oversampled 
SAR

Precision ΔΣ SAR

Pipelined

FAST ΔΣ

R
es

o
lu

ti
o

n
 (

EN
O

B
)

Usable Bandwidth (Hz)



University of Florida
AMS
  ABUFL

ADC Types

– Several types ADC covering the spectrum
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Alternative Approach: Oversampling

• Improving SNR for a band-limited signal
– Increasing # of quantization levels  smaller VLSB

– Increase the sampling frequency

28
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Oversampling

• Doubling the oversampling ratio (OSR)
– Halves the quantization power

– Increases SNR by  3dB

• 4-bit flash ADC @ 100 MHz
– OSR=1 (Nyquist) SNR=25.7dB

– OSR=4                  SNR=31.7dB

29
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Noise-Shaping & Oversampling

• Using both oversampling and noise-

shaping

30
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PSD
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Noise-Shaping & Oversampling

• Using both oversampling and noise-

shaping

30

PSD

2

sf
f

2

12 s

LSB

f

( )f z



University of Florida
AMS
  ABUFL

Frequency Domain Analysis

• By taking the Z-transform

– The NTF above is           

31
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Implementation

• We are aiming to implement

– For a Nyquist quantizer

– For first-order noise shaping

32
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Output Spectrum

– OSR=32, Q-levels=3
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Opamp Gain

• Ideal integrator

• Limited opamp DC gain (A)

• NTF would be 

34
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Opamp Gain

• Depending on OSR
– High OSR Opamp gain dominates

– Low OSR  Quantization noise dominates
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Opamp Gain

• Depending on OSR
– High OSR Opamp gain dominates

– Low OSR  Quantization noise dominates
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Theoretical gain-error effect

– 2nd Order DSM

– Further improvement using higher order DSM
36
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Continuous-Time ΔΣ

• CT integrator Vs.  DT
– No sampling switch

– No sampling cap 

– Better Settling and Slewing

– RC Variation

37
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ΔΣ Modulators

• Trade-off  (Figure of Merit)
– High SQNR

– High bandwidth

– Low Power

• Back-end quantizer
– Typically Flash

– Memoryless

– Large power consumption

38
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Traditional Dual-Slope

• Simple ADC using time as media
– Signal is sampled in one phase, Discharged in the 

other phase

– Discharging time quantized by fast clock

39
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Noise-Shaped Integr. Quant.

• Small modification
– Input is sampled in the same fashion

– Discharging until the next edge after zero crossing

40
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Double Noise-Shaped Quantizer

• Double Noise-Shaped Quantizer
– Working in Time/Phase domains
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CT DSM Architecture

• DNSQ and digital integrator at back-end
– Fabricated in 130nm node

– 6-bit Double Noise Shaped Quantizer

DoutCouter

CLK

GROTin 1-z-1
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Performance Comparison

• Measured fabricated prototype
– Bested every performance down to 28nm node

44

NSIQ+Digital Int.
DNSQ

fs = 640 MHz BW = 15 MHz

- VLSI 2015

- JSSC 2016

- ISSCC 2017

- Invited JSSC 2017 (to appear)

Sponsored by Qualcomm Inc.



University of Florida
AMS
  ABUFL

Future work

• How far we can make scale ADCs 

efficiently in nanometer CMOS nodes?

• BW limitations?

• Are we ready for portable 5G?

• …

45

Currently investigating these funded by

Sponsored by Semiconductor Research Corp (SRC)

And Qualcomm Inc.
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Where Were We

• ADC pioneers
– 11-bit 50ks/S SAR ADC

– FoM= 2.88µJ/ Conv. Step
46
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Where We Are

• Latest ADCs in same performance 

range with 2fJ/Conv. Step
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Where We Are

• Latest ADCs in same performance 

range with 2fJ/Conv. Step
– Improvement of 1.44 Billion  times!

– Not to mention the size reduction (0.1mm2)

• If vehicles followed the same
– In 1960s, the average MPG was about 8

• Improvement with factor of 1.44Billion 

means

– With one drop of fuel (0.1cc) you can drive 

round the earth 12 times! 

47
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Power Management

• Generate various DC voltages

• Low-Dropout Regulators (LDO)
– Clean voltage ripple

– Fast transient response

– Min. power

– Need fast opamp

• Suffers from the same fate as ADCs
48
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DLL & 

Timing
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– All logic based (except pass transistor)
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Measurement Results

• Measured Results
– 0.13um process

– Small Area (350X250um)

52

350 µm

Digital logic

+

MiM Cap

250 µm

Power 

Transistor

Passive 

devices

Steady State 

power consumption < 100uA

To be presented at European Solid-State Circuits (ESSCIRC)

Sponsored by Analog Devices Inc (ADI)
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IMPRESS

• Implantable Multimodal Peripheral 

REcording and Stimulation System
– To enable bidirectional control of prosthetic limb 

53

DARPA LUKE arm
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Motivation

• In collaboration with imec

• Motivation: restore
– motor functionality

– sensory feedback

– temperature, pressure sensation for better 

control,...

– alleviate phantom limb pain

54
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Research Goal

• Communication between brain of  

amputee and bionic arm/hand
– Bi-directional neural interface

55

brain
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control
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▪ hd-TIME: 
high-density  
Transverse
Intrafascicular  
MicroElectrode

▪ Active probe: CMOS device + integrated electrodes  
implanted inside the nerve
▪ bidirectional interface ← recording and stimulation

▪ high electrode count with few external connections ← multiplexing

▪ higher fiber selectivity ← transversal intra-fascicular implantation

▪ higher signal ← local amplification

▪ low power consumption ← power-efficient circuit design

▪ minimum invasiveness ← chip thinning

▪ long-term biocompatibility & stability ← custom chip encapsulation

Proposed Solution
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Packaging

IrO2  electrodes deposition

Laser cutting of embedding

Back-to-back gluing

probe thickness: 2x75µm  

(2x hd-TIME)



University of Florida
AMS
  ABUFL

▪ 64 active electrodes
▪ AC-coupled in-pixel amplifier: 24 dB, ~1 Hz HPF corner

▪ Switch-matrix
▪ select best recording electrodes without need of repositioning the  

probe

▪ 16 channels for simultaneous readout
▪ Programmable Gain: 4—44 dB

hd-TIME backend IC

Flex Cable Flex ADC Driver SAR ADC  

Driver Cable
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1 12
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664 16
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x64 Ref. Electrode
x1 x16
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x1

16

16

ENG Acquisition Chain
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hd-TIME backend IC

Flex Cable

Driver

Mux

16

Flex  

Cable

500kHz

12

ADC Driver SAR ADC

1
6

:1

160kΩ

160kΩ

16

16

▪ Muxed at 31.25kHz/ch.

▪ Output driver

▪ ADC driver with  
programmable gain

▪ 12-bit 500kS/s SAR ADC

▪ synchronization MUX/ADC  
through SPI command

18

ENG Acquisition Chain
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Measurement Results
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▪ Acquisition of pre-recorded spikes through whole system
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Physical Unclonable Function 

• Used in
– Cryptography

– Chip identification

– Obfuscation 

– …
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Our Approach

• Create PUF for use in Analog/Mixed-

Signal (AMS) applications 
– Leverages process variations 

• Stochastic ADC based PUF:
– Easy identification in AMS chips

– Can also be utilized in fully digital chips using 

standard cells

– Simple design

– Minimal hardware overhead with reuse of 

components readily available in most AMS chips

62
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PUF Bit Generation

• Inherent random input offset voltage (Vos) 

of each comparator is normally distributed

• Employ Vos to generate a single bit (OUT)

– Positive Vos → OUT = 1

– Negative Vos → OUT = 0
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Proposed All-Digital Comparator

• Compared with Custom Design

64

Traditional Custom 

Designed Comparator

(2-Tail)

Proposed All-Digital 

Extended Offset Comparator 

(3-Tail)



University of Florida
AMS
  ABUFL

• Fabricated prototype*
– Fabricated in 0.13µm CMOS process

– Active area 0.144mm2

• Normalized Intra-HD
– Across VDD (0.8V – 1.4V)

• 2-Tail: < 0.89%

• 3-Latch: < 0.96%

65

– Across Temp (0°C – 80°C)

• 2-Tail: < 0.14%

• 3-Latch: < 0.15%

Measurement Results

Sponsored by National Science Foundation (NSF)
*IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 2017
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Conclusions

• Analog signals are everywhere
– Even digital data requires analog signal 

processing techniques

• Different applications demand different 

specs
– Audio  Very high linearity and resolution

– Video  Medium BW and medium resolution

– HD Video Medium BW and high resolution

– BCI Very low BW and medium resolution

– Communication Large BW and medium 

resolution 

– …
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Conclusions

• Analog signals are everywhere
– Even digital data requires analog signal 

processing techniques

• Different applications demand different 

specs
– Audio  Very high linearity and resolution

– Video  Medium BW and medium resolution

– HD Video Medium BW and high resolution

– BCI Very low BW and medium resolution

– Communication Large BW and medium 

resolution 

– …
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Every new application

opens up new opportunities and

brings new challenges in 

Analog/Mixed-Signal Domain
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